
The JRELIABILITY Tutorials

Michael Glaß

October/29/2008

This tutorial consists of five sections: The first section is an installation guide for JRELIABILITY. The
second section outlines the structure of JRELIABILITY covering modeling and evaluation. The third part
gives a very brief introduction of Binary Decision Diagrams (BDDs) that are used to encode the Boolean
functions that are the main data structure for the modeling. Concluding, two examples show how to
model and evaluate a Boiler that controls a hot water tank using BDDs as well as a Triple Modular
Redundancy (TMR) structure where modeling using linear constraints is introduced.

© JReliability.org

1

1 Installing JRELIABILITY

To install JRELIABILITY, the first step is to ensure that at least Java 5 Runtime Environment (JRE) is
installed on your system. (You can use java -version on your command line (console) to check the
version of your JRE.) If this is not the case, visit http://java.sun.com, download, and install the latest
JRE for your operating system.

Next, you have to download the JRELIABILITY jar from http://www.jreliability.org. Download
the latest release (currently, the zip-file jreliability-1.2.zip). Unzip all files.

To use JRELIABILITY as a library for your project, copy the included jreliability-1.2.jar file to your stan-
dard lib folder of your project or include the path to the file in your classpath.

A small test example can be executed for a quick start: On Windows systems, you can start the test
example of JRELIABILITY with the start.bat file (or double-click the jreliability-1.2.jar file). On UNIX
systems, use start.sh. Alternatively, you can use the command:
java -jar jreliability-1.2.jar

To install the JRELIABILITY tutorials, download the latest release (currently, the zip-file jreliability-
tutorials-1.2.zip). Unzip all files.

To launch the Boiler example use:
java -jar jreliability-tutorials-1.2.jar
or
java -cp jreliability-tutorials-1.2.jar org.jreliability.tutorial.boiler.BoilerTester
To launch the TMR example use:
java -cp jreliability-tutorials-1.2.jar org.jreliability.tutorial.tmr.TMRTester

2

http://java.sun.com
http://www.jreliability.org

2 Understanding JRELIABILITY

The basic idea of the JRELIABILITY library is that there is some kind of Model of the system that de-
scribes its behavior in case of occurrences like failures, defects or also the repairing of system com-
ponents. Based on this model, the ReliabilityFunction of the overall system can be generated. In the
last step, a set of evaluators derives reliability-related measures based on the either the Model and the
ReliabilityFunction or, if possible, on the ReliabilityFunction only.

Model

ReliabilityFunction

Evaluator

derive

use

2.1 Modeling

The behavior of a system is typically represented by fault-trees, Reliability Block Diagrams (RBDs),
automatons, Markov-chains or Boolean functions. All these techniques have in common that there
exists, either implicitly or explicitly, a data-structure that allows to determine whether the system is
working properly in its current state or whether it failed, i.e., it is not working properly. In JRELIABILITY, a
Boolean function is used to represent this so called structure function of the system, encoded in Binary
Decision Diagrams (BDDs).

To be able to derive the ReliabilityFunction of the overall system, the ReliabilityFunction of each ele-
ment in the system has to be given. For this purpose, a data-structure called FunctionTransformer is
used in JRELIABILITY that is a simple mapping of each element to its corresponding ReliabilityFunction.
JRELIABILITY comes with a large set of predefined common ReliabilityFunctions based on exponential
distributions, Weibull distributions, and many more.

With this knowledge, the JRELIABILITY structure can be refined as follows:

3

BDD FunctionTransformer

ReliabilityFunction

Evaluator

derive
derive

use

Note that the BDD encoding the Boolean function in connection with the FunctionTransformer is just
one way to derive the overall ReliabilityFunction. Other ways can be implemented by the user and are
also future work for the JRELIABILITY library.

For more information on how to use BDDs see the next section, for examples on how to setup a BDD
for a given system see the last two sections of this tutorial.

2.2 Evaluation

Once the ReliabilityFunction of the overall system is determined, the reliability-related measures like
Mean-Time-To-Failure (MTTF), Mission-Time (MT), failure-rates etc. are derived using so called Eval-
uators. An Evaluator commonly takes a ReliabilityFunction as an input and determines the desired
measure either analytically or via sampling or simulation. Some Evaluators also need access to the
ReliabilityFunction of each element of the system and to the Boolean structure function of the overall
system that is encoded in the BDD. For this purpose, a special ReliabilityFunction called BDDReliabil-
ityFunction is provided that also gives access to both, the ReliabilityFunction of each element and the
BDD.

For more information on how to use the evaluators see the examples in the last two sections of this
tutorial.

4

3 BDDs - A very brief Introduction

The basic model for the systems behavior that is currently feature in JRELIABILITY are Boolean function.
The basic data-structure to encode these function efficiently in JRELIABILITY are Binary Decision Dia-
grams or short BDDs. An important feature of JRELIABILITY is that it offers a special generic interface to
several BDD libraries that allows to directly use the Java Objects that model the real system components
as variables of the BDD.

BDDs allow a canonical representation of Boolean functions. A BDD itself is a rooted, directed, acyclic
graph that consists of decision nodes that correspond to variables and two terminal nodes 0 and 1 that
correspond to the return value of the Boolean function. Since each variable is a binary variable that can
only take the values 0 or 1, each decision node has two outgoing edges low and high that correspond
to the variable being 0 or 1. Each variable assignment that reaches the 1 terminal node corresponds
to a proper working system while each assignment that reaches the 0 terminal node corresponds to a
system that failed, respectively.

Decision Node

Decision Node2

10

high

low

high
low

In this reliability library, each variable commonly corresponds to a component, i.e., its representation as
a Java Object, of the system with a 0 value corresponding to a fault of the component while a 1 value
corresponds to a proper working component, respectively. The Objects of each of the components are
directly connected using logical operators like, e.g., AND and OR to encode the overall structure function
of the system in a single BDD.

A simple example of a heater and two pumps is given as a fault-tree:

5

Failure

≥ 1

Heater fails &

Pump1 fails Pump2 fails

The statement that can be derived from this fault-tree is

0 = Heater fails∨ (Pump1 fails∧Pump2 fails) (1)

Since it is more intuitive to model the BDD in a way that 1 is the desired result of the Boolean function,
the fault-tree can be simply inverted, leading to

1 = Heater works∧ (Pump1 works∨Pump2 works) (2)

Using the variables h for the Heater, p1 for pump1 and p2 for pump2, the desired Boolean function, i.e.,
the structure function ϕ is:

ϕ(x, p1.p2) = h∧ (p1∨ p2) (3)

The corresponding BDD looks as follows:

6

h

p1

p2

10

7

4 Example 1: A hot water Boiler

This example introduces a simple system of a hot water Boiler. It shows how the system can be modeled,
represented as a Boolean function and encoded in a BDD, converted into a ReliabilityFunction, and
evaluated afterwards.

The Boiler models a boiler that is responsible for keeping the water in a tank at the desired temperature
and pumping it to a destination if needed. The Boiler consists of two Sensors that both measure and
compare the measured water temperature to be sure the correct temperature is known, a Controller
that activates and deactivates a Heater to control the water temperature as well as it activates and

deactivates one of two available Pumps to pump the water to its destination if needed. The following
success-tree visualizes the system:

8

Proper Operation

&

&

&

Sensor2Sensor1 Controller

Heater Controller &

Controller≥ 1

Pump1 Pump1

The non-minimized Boolean function that describes whether this system works correctly (evaluates to
1) or fails (evaluates to 0) is as follows:

((Sensor1∧Sensor2)∧Controller)∧ (Controller∧Heater)∧ (Controller∧ (Pump1∨Pump2)) (4)

Given this description of the system, the following tutorial will show how this Boiler can be modeled and
evaluated using JRELIABILITY. First, an abstract BoilerComponent is defined that will serve as the base
class for all components of the Boiler.

BoilerComponent.java

public abstract class BoilerComponent {

9

protected final String name;

public BoilerComponent(String name) {
this.name = name;

}

public String getName() {
return name;

}

public String toString() {
return name;

}

}

The BoilerComponent includes all the things that the system components have in common, in this case,
a name is assigned to all of them. Next, the classes Sensor, Controller, Heater, and Pump are defined.

The system components

public class Sensor extends BoilerComponent {

public Sensor(String name) {
super(name);

}

}

public class Controller extends BoilerComponent {

public Controller(String name) {
super(name);

}

}

public class Heater extends BoilerComponent {

public Heater(String name) {
super(name);

}

}

public class Pump extends BoilerComponent {

public Pump(String name) {
super(name);

}

}

For the sake of simplicity, no further functionality is added to these classes. When modeling the real

10

system, one could implement further functionality or add more data to each type of component. In this
tutorial, the different classes are used to show that the encoding of the system structure in the BDD can
be performed using different and user defined classes that model the system components.

The next step is to model the overall system, i.e., the Boiler.

Boiler.java

public class Boiler {

protected Sensor sensor1 = new Sensor("Sensor1");
protected Sensor sensor2 = new Sensor("Sensor2");
protected Controller controller = new Controller("Controller");
protected Heater heater = new Heater("Heater");
protected Pump pump1 = new Pump("Pump1");
protected Pump pump2 = new Pump("Pump2");

protected List <BoilerComponent > components = new ArrayList <BoilerComponent >();
protected BoilerTransformer transformer;

public Boiler() {
super();
initialize();
transformer = new BoilerTransformer(this);

}

//
// Initializes the list of components of the Boiler.
//
private void initialize() {

components.add(sensor1);
components.add(sensor2);
components.add(controller);
components.add(heater);
components.add(pump1);
components.add(pump2);

}

//
// Returns a model of the Boiler as a BDD.
//
public BDD<BoilerComponent > get() {

BDDProviderFactory bddProviderFactory = new JBDDProviderFactory();
BDDProvider <BoilerComponent > bddProvider = bddProviderFactory

.getProvider();

BDD<BoilerComponent > sensor1BDD = bddProvider.get(sensor1);
BDD<BoilerComponent > sensor2BDD = bddProvider.get(sensor2);
BDD<BoilerComponent > controllerBDD = bddProvider.get(controller);
BDD<BoilerComponent > heaterBDD = bddProvider.get(heater);
BDD<BoilerComponent > pump1BDD = bddProvider.get(pump1);
BDD<BoilerComponent > pump2BDD = bddProvider.get(pump2);

BDD<BoilerComponent > sensorSubSystem = sensor1BDD.and(sensor2BDD);
BDD<BoilerComponent > senControlSubSystem = sensorSubSystem

.and(controllerBDD);

11

BDD<BoilerComponent > heatingSubSystem = heaterBDD.and(controllerBDD);

BDD<BoilerComponent > pumpSubSystem = pump1BDD.or(pump2BDD);
BDD<BoilerComponent > pumpControlSubSystem = pumpSubSystem

.and(controllerBDD);

BDD<BoilerComponent > boilerBDD = senControlSubSystem
.and(heatingSubSystem);

// Important: With -operators consume (destroy!) the BDD that is the
// argument i.e. the pumpControlSubSystem is destroyed after this
// operation , while
// BDD <BoilerComponent > boilerBDD = boilerBDD.and(pumpControlSubSystem);
// would not destroy anything
boilerBDD.andWith(pumpControlSubSystem);

return boilerBDD;
}

//
// Returns the components of the Boiler.
//
public List <BoilerComponent > getComponents() {
return components;

}

//
// Returns the BoilerTransformer.
//
public BoilerTransformer getTransformer() {
return transformer;

}

}

The Boiler contains all the components of the system and calculates the BDD that represents the system
structure ϕ. Note that the function get() creates the BDD using simple AND and OR-operators.

As the last modeling step, the Transformer that assigns each system component a ReliabilityFunction
has to be provided.

BoilerTransformer.java

public class BoilerTransformer implements FunctionTransformer <BoilerComponent > {

Map<BoilerComponent , ReliabilityFunction > reliabilityFunctions = new HashMap <
BoilerComponent , ReliabilityFunction >();

public BoilerTransformer(Boiler boiler) {
initialize(boiler);

}

private void initialize(Boiler boiler) {
for (BoilerComponent component : boiler.getComponents()) {

ReliabilityFunction reliabilityFunction = new WeibullReliabilityFunction(
0.5, 2);

reliabilityFunctions.put(component , reliabilityFunction);

12

}

}

public ReliabilityFunction transform(BoilerComponent element) {
ReliabilityFunction reliabilityFunction = reliabilityFunctions

.get(element);
return reliabilityFunction;

}

}

In this case, the transformer simply assigns each component a WeibullReliabilityFunction with scale set
to 0.5 and a scale of 2.

Since the Boiler is modeled using a BDD with a FunctionTransformer, the BoilerTransformer, being
available as well, the standard constructor of the class BDDReliabilityFunction can be used that creates
the desired ReliabilityFunction given a BDD and a FunctionTransformer.

As a last step, a BoilerTester is used to show how to use Evaluators and how to invoke the JRELIABILITY

extended GUI.

BoilerTester.java

public class BoilerTester {

//
// Main.
//
public static void main(String[] args) {

Boiler boiler = new Boiler();
BDD<BoilerComponent > boilerBDD = boiler.get();

// Visualizing the BDD
String dot = BDDs.toDot(boilerBDD);
System.out.println(dot);
System.out.println("***");

BoilerTransformer transformer = boiler.getTransformer();

BDDReliabilityFunction <BoilerComponent > reliabilityFunction = new
BDDReliabilityFunction <BoilerComponent >(
boilerBDD , transformer);

// Using Evaluators
// Calculate Mean -Time -To-Failure (the first moment of the density
// function)
MomentEvaluator moment = new MomentEvaluator(1);
Double mttf = moment.evaluate(reliabilityFunction);
System.out.println("Mean -Time -To-Failure: " + mttf);
System.out.println("***");

// Using the GUI
Map<String , ReliabilityFunction > reliabilityFunctions = new HashMap <String ,

13

ReliabilityFunction >();
reliabilityFunctions.put("Boiler", reliabilityFunction);

ReliabilityViewer.view("JReliability Viewer - Boiler Tutorial",
reliabilityFunctions , true);

}

}

The BoilerTester first prints the generated BDD to standard out using the DOT input format. Afterwards,
it creates the desired ReliabilityFunction. Given the ReliabilityFunction, using an Evaluator is straight-
forward: In this case, the MomentEvaluator calculates the first moment of the density function that can
be automatically derived from the ReliabilityFunction. This first moment equals the well-known Mean-
Time-To-Failure (MTTF) of the system. Afterwards, the GUI can be started with the ReliabilityFunction
of the hot water system that has been assigned a name before. This way, many different systems or the
same system with different parameters can be added to the same GUI and shown together in the plot.

The output of the BoilerTester should be the DOT input string and a MTTF of 0.605152247684672.
Plotted using DOT and converted to .pdf, the BDD looks as follows:

14

The JRELIABILITY viewer should show the following reliability function:

15

This extended GUI shows common reliability-related measures, different aspects of the system that can
be derived analytically as well as the histogram of sampled datas that are derived by a Evaluator that
determines times-to-failures by a sampling approach. The extended GUI is launched by setting the
showSampleHistograms when using ReliabilityViewer.view() to true.

16

5 Example 2: Triple-Modular-Redundancy

This example covers a well-known construct that provides fault-detection as well as fault-tolerance,
the Triple-Modular-Redundancy or short TMR. The TMR is a 2-out-of-3 voter that compares the results
provided by three (often equal) components performing the same functionality and propagates the result
of at least two of the three components that have identical results. Otherwise, a fault in more than one
component is assumed and the correct result cannot be determined anymore.

The 2-out-of-3 voting is an interesting case where the modeling of the system is much easier using a
linear constraint. Without the linear constraint, the structure function would looks like this:

(component1∧ component2)∨ (component1∧ component3)∨ (component2∧ component3) (5)

On the other hand, formulated as a linear constraint, the function becomes quite compact:

component1+ component2+ component3≥ 2 (6)

JRELIABILITY offers a special function to represent a linear constraint as a BDD in its BDDs class that
serves as a toolbox. The linear constraint consists of variables and corresponding coefficients, e.g.,
3x, on the left-hand-side, a comparator, i.e., ≥, >, < ≤, and =, as well as the right-hand-side that is an
integer value.

In the following, the implementation of the TMR is shown. Note that there is no special class defined for
the components of the TMR but the class String can also be easily used for the modeling.

TMR.java

public class TMR {

protected String component1 = new String("component1");
protected String component2 = new String("component2");
protected String component3 = new String("component3");
protected FunctionTransformer <String > transformer;

public TMR() {
super();
initialize();

}

//
// Initializes the FunctionTransformer of the TMR.
//
private void initialize() {

Map<String , ReliabilityFunction > reliabilityFunctions = new HashMap <String ,
ReliabilityFunction >();

ReliabilityFunction function = new ExponentialReliabilityFunction (0.1);
reliabilityFunctions.put(component1 , function);
reliabilityFunctions.put(component2 , function);
reliabilityFunctions.put(component3 , function);
transformer = new SimpleFunctionTransformer <String >(

reliabilityFunctions);
}

17

//
// Returns a model of the TMR as a BDD.
//
public BDD<String > get() {

BDDProviderFactory bddProviderFactory = new JBDDProviderFactory();
BDDProvider <String > bddProvider = bddProviderFactory.getProvider();

BDD<String > component1BDD = bddProvider.get(component1);
BDD<String > component2BDD = bddProvider.get(component2);
BDD<String > component3BDD = bddProvider.get(component3);

// To use the inbuilt constraint functionality , setup the left -hand -side
// first

List <Integer > coefficients = new ArrayList <Integer >();
List <BDD<String >> variables = new ArrayList <BDD<String >>();

coefficients.add(1);
variables.add(component1BDD);

coefficients.add(1);
variables.add(component2BDD);

coefficients.add(1);
variables.add(component3BDD);

BDD<String > tmr = BDDs.getBDD(coefficients , variables , ">=", 2);

return tmr;
}

//
// Returns the FunctionTransformer.
//
public FunctionTransformer <String > getTransformer() {
return transformer;

}

}

In this example, all components are assigned an ExponentialReliabilityFunction with a failure rate of 0.1.

Given the definition of the TMR, a TMRester similar to the one used in the Boiler example is imple-
mented. A difference is that a second ExponentialReliabilityFunction with a failure rate of 0.1 is created
that corresponds to a system with only one instead of three components in the TMR.

TMRTester.java

public class TMRTester {

//
// Main.
//
public static void main(String[] args) {

18

TMR tmr = new TMR();
BDD<String > tmrBDD = tmr.get();

// Visualizing the BDD
String dot = BDDs.toDot(tmrBDD);
System.out.println(dot);
System.out.println("***");

FunctionTransformer <String > transformer = tmr.getTransformer();

BDDReliabilityFunction <String > reliabilityFunctionTMR = new
BDDReliabilityFunction <String >(
tmrBDD , transformer);

// The single element solution equals a simple
// ExponentiaRreliabilityFunction
ReliabilityFunction reliabilityFunctionSingle = new

ExponentialReliabilityFunction(
0.1);

// Calculate Mean -Time -To-Failures (the first moment of the density
// function)
MomentEvaluator moment = new MomentEvaluator(1);
Double mttfTMR = moment.evaluate(reliabilityFunctionTMR);
System.out.println("Mean -Time -To-Failure of TMR: " + mttfTMR);
Double mttfSingle = moment.evaluate(reliabilityFunctionSingle);
System.out.println("Mean -Time -To-Failure of single element: "

+ mttfSingle);
System.out.println("***");

// Using the GUI
Map<String , ReliabilityFunction > reliabilityFunctions = new HashMap <String ,

ReliabilityFunction >();
reliabilityFunctions.put("TMR", reliabilityFunctionTMR);
reliabilityFunctions.put("Single Component", reliabilityFunctionSingle);

ReliabilityViewer.view("JReliability Viewer - TMR Tutorial",
reliabilityFunctions);

}

}

The output of the TMRTester should be the DOT input string and a MTTF of 8.318560681776674 for
the TMR and a MTTF of 9.929773583403188 for the single component solution. Plotted using DOT and
converted to .pdf, the BDD of the TMR looks as follows:

19

The standard JRELIABILITY viewer (not launching the histogram for sampled data) should show the
well-known comparison between TMR and the single component system:

20

	Installing JReliability
	Understanding JReliability
	Modeling
	Evaluation

	BDDs - A very brief Introduction
	Example 1: A hot water Boiler
	Example 2: Triple-Modular-Redundancy

